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Physiological pumps produce flows by alternate contraction and expansion of the 
vessel. When muscles start to squeeze its wall the valve at the upstream end is closed 
and that a t  the downstream end is opened, and the fluid is pumped out in the down- 
stream direction. These systems can be modelled by a semi-infinite pipe with one end 
closed by a compliant membrane which prevents only axial motion of the fluid, 
leaving radial motion completely unrestricted. In  the present paper an exact similar 
solution of the Navier-Stokes equation for unsteady flow is a semi-infinite contracting 
or expanding circular pipe is calculated and reveals the following characteristics of 
&is type of flow. In  a contracting pipe the effects of viscosity are limited to a thin 
boundary layer attached to the wall, which becomes thinner for higher Reynolds 
numbers. In  an expanding pipe the flow adjacent to the wall is highly retarded and 
eventually reverses at  Reynolds numbers above a critical value. The pressure gradient 
along the axis of pipe is favourable for a contracting wall, while it is adverse for an 
expanding wall in most cases. These solutions are valid down to the state of a com- 
pletely collapsed pipe, since the nonlinearity is retained in full. The results of the 
present theory may be applied to the unsteady flow produced by a certain class of 
forced contractions and expansions of a valved vein or a thin bronchial tube. 

1. Introduction 
The main part of the cardiovascular pump is a valved vessel. When the blood in the 

left ventricle is being forced by systole into the aorta, the mitral valve is closed while 
the atrioventricular valve is open. At this stage the left ventricle forms a vessel with 
one end closed. 

Considering the high Reynolds number, of order 5000, for the ejection of blood into 
the aorta, Jones (1969, 1970) proposed a mathematical model for unsteady flow of 
inviscid fluid in such a vessel. Very little is known so far about unsteady flows of 
viscous fluid produced by contraction of the walls of a vessel with one end closed. 

With regard to the unsteady flow produced in a vessel of infinite length by pulsatile 
wall deformations, extensive work has been done on peristaltic pumping by many 
authors such as Fung & Yih (1968), Shapiro, Jaffrin & Weinberg (1969) and others 
referred to in the comprehensive papers by Jaffrin & Shapiro (1971) and by Lighthill 
(1972). Fung & Yih (1968) indicate that peristalsis may be involved in the flow 
through small blood vessels. Previous investigations on peristalsis mostly concern the 
progressive wave motion through an infinite valveless tube. 

13-2 



372 8. Uchida a d  H .  Aoki 

A vein of medium size also has a valve system. When it contracts the valve a t  the 
upstream end is closed and that at  the downstream end is open. In  such a vessel or a 
tube with one end closed the contents are ejected into the adjoining section mainly by 
the simple contraction of the tube diameter, even though the peristalsis, if any, 
may help to transport the contents. By cooperating with motions of valve a vein 
with a valve system can act as a local pumping station powered by the action of 
muscles. 

A similar situation can be seen in the unsteady air flow through a thin bronchial 
tube, which has no valve but is closed at one end by lung alveoli. Since the tube is 
terminated by numerous air cells, the condition at the closed end may not be 
simple. 

I n  the present paper the blood vessel, closed at one end by a valve, or the thin 
bronchial tube is modelled by a semi-infinite circular pipe with one end closed by an 
idealized compliant membrane which prevents only axial motion, leaving radial 
motion completely unrestricted. Unsteady flows produced by a single contraction or 
expansion of the wall are then calculated. The end condition can be satisfied by using 
an infhite pipe divided into two parts by a compliant membrane a t  the origin stretched 
perpendicular to the axis of the pipe. The fluid flow is symmetrical about this mem- 
brane, therefore the axial velocity vanishes. 

Assuming that the radius of the pipe is a function only of time, i.e. a = a(t) ,  a solu- 
tion of the Navier-Stokes equation similar with respect to axial distance from the 
closed end can be obtained. Denoting axial and radial distance by x and r, respec- 
tively, the stream function is found to be proportional to x times a function F(7, t ) ,  
where 7 = r/a. By introducing the non-dimensional parameter a(t) = da/v, in which 
a = da/& is the velocity of the wall and v is the kinematic viscosity, the differential 
equation for F(7, t )  can be written in terms of a(t) and 7 only. If we assume further that 
the function F is a function only of 7 and that a is a constant parameter, the similar 
solution for the stream function may be calculated from the differential equation for 
F(T) ,  which contains a as a constant parameter. 

The present solution is valid for contraction down to complete collapse of the pipe 
to zero diameter and for expansion up to infinite diameter, since the nonlinearity is 
retained in full. Numerical results for the velocity components, the pressure distri- 
bution and the shearing stress on the wall are also presented. Though the present 
similar solution requires a particular class of imposed wall motions, it may be appli- 
cable to a certain type of forced contraction or expansion of a valved vein or a thin 
bronchial tube. 

2. Fundamental relations 
Unsteady flow of an incompressible viscous fluid through a semi-infinite circular 

pipe whose radius varies with time is considered. A section of such a pipe with a con- 
tracting wall is shown in figure 1.  The pipe is closed a t  x = 0 by an elastic membrane 
which prevents axial motion but is fully compliant to radial motion produced by the 
wall. This situation may easily be achieved by making the flow symmetrical about the 
plane x = 0, as shown in the figure. 

Referring to cylindrical co-ordinates (2, r, 8) and denoting the velocity components 
in the axial and radial directions by u and v respectively, axisymmetric unsteady flow 
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FIGURE 1. Flow patterns in a contracting pipe. 

is governed by the following equations of continuity and of motion: 

ux + v, + v/r = 0, 

vt + u v x  + vv, = -p,./p + v(vXx + v, + v,/r - v/r2). 

(1)  

ut+uux+uu, = -P, /p+~(~,~+u,+u, /r) ,  (2) 

(3) 

The wall of the pipe moves only in the radial direction and its radius is a,ssumed to be 
a function of time only. The radial velocity of fluid at the wall, denoted by v,, is equal 
to the wall velocity da/dt = a. The boundary conditions are therefore 

u = 0, v = v, = d at r = a(t), 
u,=O, v = O  at r = O  (4) 

and u=O at x = O ,  (6) 

where v is left free. 
The flow field becomes greatly simplified in the present circumstances. The volume 

flow past a section x is supplied by the fluid which was contained in the now diminished 
volume of pipe between x = 0 and x. Thus the mean flow velocity urn is given by 

u,(x, t )  = - 2xci/a, (6) 

which indicates that urn is proportional to x. 
In order to satisfy the equation of continuity identically, the Stokes stream function 

(7) 
llf defined by 

is introduced. Eliminating the pressure from the equations of motion gives the 

(8) 
vorticity equation 

where 5 = v, - u, = - [($x/r)x + ($,./r),.] is the vorticity component normal to the 
meridian plane. Substitution of (7) into (8) gives a differential equation for $. 

u = $,.I?-, v = -1c.,/r 

ct + u c x  +a - v5/r = a x x  + 5, + 61. - 5/:I.”,, 
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3. Similar solution with respect to x 
Since the variation of the wall radius is independent of x and the flow has no par- 

ticular length scale in thex direction, asimilar solutionwithrespect toxcanbeexpected. 
Because the boundary conditions are imposed on r/u = 0 and 1, a non-dimensional 
variable proportional to r/u is first introduced, and a similar solution of the form 
@ = xmj(u) F(7,  t ) ,  where 7 = Ar/u, is examined. 

It is easily found that this expression gives a mean axial velocity proportional to 
xm. Comparison with ( 6 )  thus gives m = 1. It is noted that in this case u,, = v, = 0. 
Substituting these expressions into the vorticity equation (8) and comparing the 
dimensions of the inertial terms, proportional to x.f2/u6, and the viscous terms, propor- 
tional to xfv/u6, we obtainf(u) = v. In  order to simplify the formulation A is taken to be 
unity; this will be discussed further in the next section. 

Consequently the similar solution is of the form 

$ = YXP(7,t), 7 = r/u. (9) 

u = (vx/a2) (F7/7), 9 = -@/a, (F/7) .  (10) 

The axial and radial velocity components are, respectively, 

The boundary condition ( 5 )  is found to be satisfied automatically. Since v is indepen- 
dent of x in this particular configuration, the vorticity is simply g = -u,, and (3) 
reduces to prz = 0. It is found that the characteristics of the present flow are simplified 
by these relations. 

Substituting 5 = - u, and v/r = - u, - v,, from continuity, into the vorticity equa- 

(11) 
tion (8), we have 

The same expression can also be obtained by direct calculation of p ,  = 0 from (2). 
Substitution of (10) into (1 1) gives the differential equation for F cia 

[ v( u,, + u, + u,/r) - (Ut + uu, + vu,)], = 0. 

[G(7,t)l, = 0, (12) 

where a is defmed by using a in place of du/dt : 

a(t) = &/v. (14) 

The transformed expressions for the boundary conditions given by (4) are 

F/q = -a,  F7/7 = 0 at 7 = "1 1. 

F/r] = 0, (l$/q),, = 0 at r] = 

It is easily confirmed that the mean velocity calculated from (1 0) and ( 1  6) coincides 
with (6). 
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On substituting (10) into (2) and (3), the pressure gradients can be calculated from 

Pz = (pv2x/a4) G ,  (16) 

1 1 F  

where pr can be replaced by p,,/a. The shearing stress is given by 

4. Similar solution with respect to space and time 
In  order to analyse the hndamental properties of the present flow, a full solution 

similar in both space and time which preserves the nonlinear characteristics of the 
problem is studied in this section. 

Such a similar solution can be obtained by assuming Fqt = 0 and a = constant in 
(i3), which means that the function F is a function only of 3 containing a as a constant 
parameter. The value of a is taken as its initial value: 

&z/v = a = aoao/v, (19) 

where a,, and a, = (daldt), are the initial values of the radius and of its expansion rate, 
respectively. Contracting and expanding pipes thus have a < 0 and a > 0 respectively. 
The parameter la1 is the Reynolds number which represents the dynamical scale of the 
present motion. Integrating (19), it  is found that for the present similar solution the 
radius of the pipe should vary in time according to 

a/ao = [i + 2a(vt/a;)]#, 

and we have the rate of change 

v,/(ZIw)t=O = u/ao = [ 1 +  2a(vt/a;)]-*. (21) 

It is noticed that the value of the stream function on the wall,.which is denoted by 

(22) 

Some numerical examples of ./ao are shown in figure 2. 

$'u?, is a linear function of x :  
$w = vxF( 1) = - vxa. 

The differential equation for P(7)  is written with a prime in place of d/dv,  

[G(7)1' = 0, 
and is integrated as follows: 

G(7)  = ( ~ ) " + ( n + ? l + a p > ( ~ ) ' - ( $ - 2 a ) ~ =  1 F  K ,  
3 

where K is a constant. The boundary conditions are 

F/q = 0, (F'/q)' = 0 at 7 = 0, 

F/q = -a, F'/q = 0 at 7 = 1. 

The condition u = 0 a t  x = 0 can be satisfied automatically, provided that F'/q is 
finite. 
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FIGURE 2. Variation of the wall radius with time. 

Aa mentioned in the previous section we choose the independent variable defined by 
7 = T/U.  Other forms of variable, for instance = lalgq, may be used in place of q to 
transform (24)  into a simpler expression which does not contain a explicitly. However, 
the boundary condition at the wall becomes rather complicated: FIE = - lati at 
< = la]*. Thus we choose q = T/U as the independent variable. 

The function F is calculated by numerical integration of (24). Since the present form 
of (24) is singular at the origin, P is expanded in a power series 

F = bo + 61 q + b, q2 + b3 7' + .. 

bo = b, = b, = ... = b,,+, = 0. 

(26) 

(27) 

in the region close to the origin. Substituting this expression into (24)  and (25) ,  we have 

The remaining coefficients may be expressed as functions of b, and K :  

b, = &[K+4(b2-~)b2], b, = &(b2-2a)b4,  b ,  = -&(9ab,-2bq), 

btnfO = - [ (2n-4)b2+(2n+2)a] (2n+2)b , , , ,  

) / (2n+2)"(2n+4)  for n 2 2. +- Z (2n - 2 - 4 4  (2n + 2 - 2m) b,+, b2,,,-, 

( 
n-1 

m= 1 

(28) 
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a 

- 10.0 
- 6.0 
- 1.0 
- 0.1 

0 
0.1 
1.0 
1.2 
1.4 
1.6 
1.67 

K 

- 1267 
- 369.7 
- 29.93 
- 1.744 

0 
1,461 

- 1.107 
- 7.281 
- 17.13 
- 36-73 
- 54-75 

( v l ) q  -0  

26.90 
14.60 
3.620 
0,3944 
0 

- 0.4056 
- 4.839 
- 6.289 
- 8.072 
- 10.84 
- 13.33 

(P3q-1 

- 176.36 
- 69.23 
- 9.788 
- 0.8192 

0 
0.7792 
6.291 
5.335 
4.628 
1.697 

- 2.166 

TABLE 1. Numerical values of the constant K and of the functions at the boundary. 

Assuming values of b, and K ,  the function F is calculated from this power series from 
r] = 0 to 7 = 0.01, where the calculation is continued by numerical integration by the 
Runge-Kutta-Gill method up to r] = 1.  The coefficients b, and K are determined to  
satisfy boundary conditions (25 )  at 7 = 1. Examples of numerical values of K etc. are 
shown in table 1. 

When the function F has been calculated, non-dimensional expressions for $, um 
and the velocity components are obtained from 

W a o )  = (4a,)P, (29 )  

u/u, = - (2a)-l  (F'lr]), 

V/v, = v/U = -a-'(F/7), 

(31 )  

(32 )  

U(v/a0)-l = a(a/a,)-l, or &/ao = (a/a,)-l. (33 )  

where a is the expansion rate of the wall radius and is given by 

Some examples of the non-dimensional form of the stream function or F ,  

$/$to = F(7)/F(1) = -F/% (34 )  
are given in figure 3. 

Typical flow patterns for contracting and expanding pipes are shown in figures 4 (a)  
and (b )  respectively. It is found that the streamlines for an expanding tube are more 
concentrated in the central region on account of retardation in the wall region. In  the 
other half of the pipe ( x  .c 0 )  the flow patterns are symmetrical to those in x > 0. 

The absolute value of the mean velocity increases with time for a contracting pipe 
(a < 0 ) ,  while it decreases for an expanding pipe (a > 0 ) ,  as shown in figure 5.  Numeri- 
cal examples of axial velocity distributions referred to the mean velocity are shown in 
figure 6. It is found that the velocity distribution is fairly monotonic for a contracting 
pipe, and that the effects of viscosity are limited to a thin boundary layer attached to 
the wall, which becomes thinner for higher values of the Reynolds number defined by 
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FIGURP: 3. Stream function @ and the function P .  
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FIGURE 4. Streamlines. (a) Contracting pipe (a = - 1). (a) Expanding pipe (a = 1). 
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FIQURE 6. Time variation of the mean axial velocity. 
vtla: 

Re = 1011 = Id,a,/vI. The velocity distributions for an expanding pipe contain higher 
harmonics in case of high Reynolds number. The flow adjacent to the wall is highly 
retarded, and eventually reverse flow occurs in the wall region for Reynolds numbers 
above a critical value of CL = 1.644. In the limit of low Reynolds number, the velocity 
distribution approaches a parabolic distribution for both a < 0 and a > 0.  

Distributions of radial velocity referred to v, = u are shown in figure 7 .  On moving 
away from the wall along a streamline, the magnitude of the velocity increases, and 
because of this its radial component also increases at firat before falling to zero at the 
centre of the pipe. 

When reverse flow occurs in the wall region of an expanding pipe intense deforma- 
tions of the flow produce a high maximum value of v/v,. 

Regarding the pressure gradients, we have pm = prz = 0 from (16) and (17), since 
(7 = constant and Ft = 0. Hence pressure distributions at a h e d  instant can be inte- 
grated separately over 7 and x. The transformed version of (17), given by 

can be integrated along a radius at  a constant x ,  Denoting the pressure on the axis by 

F‘ I F 2  
p&x, t ) ,  we have 

pv2/ai ’-%- - - [ T + ~ ( T )  +aF-($),-J (E)-2. 
Numerical values of (F’/q)tso for various a’s are given in table 1 .  It is noted that the 
pressure difference p -pc is a function of 7 and t only, and is independent of x .  Two 
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FIGURE 6. Distributions of axial velocity. (a) Contracting pipes. (b )  Expanding pipes. 

examples are shown in figure 8. In a contracting pipe the pressure at the wall is higher 
than that at the centre and vice verm in an expanding pipe. The pressure difference 
between the wall and the centre is also constant in every section, and is given by 

By integrating (16) the pressure distribution along a line = constant is calculated 
&S -=--(-) K x 2  a -4 +c. p 

pv"a$ 2 a$ a, (38) 
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FIGURE 7. Distributions of radial velocity. (a) Contracting pipes. ( b )  Expanding pipes. 

We have the following pressure distribution along the axis: 

where per is the reference pressure on the axis at a fixed point x = 1. 
The variation of the pressure at the centre with time and space is shown in figure 9. 
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I 
FIGURE 8. Radial pressure distributions. 
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FIGURE 9 (a) .  For legend see facing page. 
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FIQURE 9. Time 
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XI1 

distribution of pressure along the axis 
pipe. ( b )  Expanding pipe. 
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FIGUF~E 10. Shearing stress along the wall. 

Since K < 0 in most cases, it is found that the pressure difference pc-pcl  increases 
with time for a contracting pipe and decreases for an expanding pipe. It is also inter- 
esting that p ,  -pel has the highest value at the origin for K < 0. This means that fluid 
flows under a favourable pressure gradient in a contracting pipe and that the pressure 
gradient is adverse in an expanding pipe except for 0 < a c 0.95. 

By combining (36) and (39), the pressure a t  an arbitrary point is calculated to be 
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Substituting boundary values a t  7 = 1 into (40), we obtain the wall pressure p w  as 

The necessary power for the external forces which balance the wall pressure can be 
calculated as 

P = 2na pw( - da/dt) ax.  (42) 1: 
Since the wall does not move in the axial direction, it is noted that the shearing stress 
along the wall does not contribute to the work done by external forces. Integrating 
(42), the non-dimensional form of P is given by 

-= P - 2 n a ( d - + [ $ + ( 3  1 la,(--) 1 a - 2  --(-) K l 3  (:)-4), (43) 
pv3/a0 P V 2 b f  a0 11’0 3 a0 

where a/ao = 1 + 2a(vt/a,2). 
The work done during the time interval t = 0 to t is calculated as 

Substituting [ (P’/7)’] ,=,  = (P”),=l into (18), the shearing stress along the wall is 
given by 

7, x a -3 
P ” l a 0  2 2 - - (P”)q-l-(-) a0 a0 . (44) 

It is noticed that 7, is proportional to the axial distance from the origin. The non- 
dimensional form of the frictional drag D, acting on the part of tube between x = 0 and 
1 is 

Values of 
(46) 

for various a are shown in table 1 and in figure 10, where the sign of r, depends on its 
definition (18). It is noted that 7, changes sign at a = 1.644 because reverse flow 
begins in the wall region. 

5. Solution for a low Reynolds number 
The previous solution shows that the effects of viscosity are indicated by the para- 

meter la/,  i.e. the Reynolds number for the present flow. The solution for a low Rey- 
nolds number can therefore be obtained by expanding variables in power series in a. 

The radius of the pipe and its rate of change are found by expanding (20) and ( 2 1 )  
respectively : - a = 1 + ~ ( + ~ ( ? ) ~ + 4 ~ 3 ( < ) ~ + . . . ,  

a0 a: a f a0 

-=  ci 1 -a(-$ + g a 2 ( ; ) 2 - $ a 3 ( $ ) 3 +  ... . 
a 0  

(47) 
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Since the orders of magnitude of u/um and v/vw in (31) and (32) are unity even for a 
vanishingly small value of a, the power-series expansion of the function F and accord- 
ingly that of the constant K may start with an a1 term. They can be assumed to have 
the forms 

F(7)  = aFl(7) + a2F2(7) + . . . + anFn(q) + . . ., (49) 

(50) K = aKl + a2K2 + . . . + anK, + . . . . 
Substituting these expressions into (24) and (26)  gives differential equations for the Fn, e)”+-(-) 1 F; ’ = K,, 

7 7  

etc., and the boundary conditions 

Fl/q = 0, (F&)’ = 0 at 7 = 0, 
Fl=-1,  F ; = O  at q = l ,  

for n 3 2. 
Fn/7 = 0, (F,!&)‘ = 0 at 7 = 0 

Fn = 0, F A = O  at 7 = 1  

These equations can be easily integrated, resulting in 

F~ = - 272 + 74, 

F 2 -  ---6- 187 2 + L  1.27 4-99+&#4, 

F3= -1067 2+-%7L 4 - A - 5  ‘3+L 8-&710+&712, 
1 0 8 0 0 7  10807 2 1  7 277 

etc., and values of the Kn may also be determined: 

K l =  16, K,=-44 3 9 K 3 --a - 1 3 b l e t c *  

The constant X is therefore given by 

K = 16a-ya2-+!&3+... . 
The stream function is given by 

$/(va,) = @/ao) [aFl+a2F2+a3F3+ ...I. 
The velocity components are calculated from 

(54) 

(55) 

(59) 
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In  the limit a+ 0, it is found that the distribution of axial velocity is parabolic as in 
Hagen-Poiseuille flow. The radial velocity always has the maximum value 

vmax/ww =%(S)$ = 1.0887 a t  7 = (8)t = 0.81650 

even in the limit a -+ 0. 
The radial pressure distribution at a fixed x is given by 

The pressure difference between the wall and the centre is calculated by putting 7 = 1 
in (64): 

The pressure distribution along the axis is given by 

where p ,  is the reference pressure at a fixed point x = I ,  r = 0. The pressure at an 
arbitrary point is obtained by adding (64) and (66). 

The necessary power for the external forces driving the present motion is calculated 

P'l 1 1 a -2 - -2na--++7r[4a2+&a3+...]- (-) P a8 

pv31ao - pv2/a: a, a0 a0 

+ 2n[-?2a2 - +$a3 - . . . 1 (33(3-4. (67) 

The shearing stress along the wall and the frictional drag between x = 0 and I are 
given by (44) and (45) with 

(J"')ll=l = 8~+2a~-&+~+ ... . (68) 

6. Concluding remarks 
A similar solution for the unsteady flows produced by a single contraction or expan- 

sion of the wall of a semi-infinite circular pipe has been investigated with special 
attention to the nonlinear characteristics of such unsteady flows. This flow model is 
motivated by physiological pumping like that in the left ventricle, in valved veins and 
in thin bronchial tubes. In  many real organs regular contraction and expansion are 
repeated, being accompanied by the switching of valves. 

The time history of the diameter of the left ventricle is not a simple sinusoidal curve 
but is fairly close to a saw-tooth wave. According to the measurements by Gould et al. 
(1972) ,  the contraction rate of the middle section of the wall of the left ventricle is 
&,M - 2 cm/s and its mean semi-axis is a, M 3-6 cm. Using v = 0.035 cm2/s for blood, 
we have quite a high absolute value of a: a M - 200. Since the left ventricle is not a 
cylindrical tube but has the shape of a bulb and since its pulsatile motion can not be 
separated into a single contraction or expansion, the present calculation may not be 
applicable directly to the flow in a left ventricle. The fundamental mechanism of the 
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%ow in part of systole or diastole, however, can be deduced from the present analysis. 
For instance, it is noted that the effect of viscosity is limited to a thin layer attached to 
the wall surface at such a high value la\ = 200. 

In  a forced contraction or expansion, time variation of the diameters of valved veins 
and thin bronchial tubes can be achieved by the action of voluntary muscles or by 
control of the external pressure. In  a practical sense even a single contraction, a stop 
or a single expansion is possible. When a valved vein of initial radius a, = 0.35 cm is 
contracted at an initial rate a, = 0.2 cm/s, we have a = 2 for blood with Y = 0-035 
cm2/s. In  a thin bronchial tube with a, = 0.15 em contracting at an initial rate a, = 0.1 
cm/s, a = 0.1 is obtained by the use of Y = 0.15 cm2/s for air. These vessels are fairly 
long circular tubes, and therefore the present theory can be applied for a forced con- 
traction or expansion similar to that given by (20) and (21). 

The results of the present analysis may be summarized as follows. 
(i) The effects of viscosity are indicated by the Reynolds number la1 = Id,a,/vl. 
(ii) The axial velocity is proportional to x, i.e. to the distance from the closed end, 

(iii) At a very low Reynolds number the distribution of axial velocity is parabolic. 
(iv) In  the flow due to a contracting wall the effects of viscosity are confined to a 

boundary layer attached to the wall which becomes thinner for higher Reynolds 
number. 

(v) In  the case of an expanding wall the flow adjacent to the wall is highly retarded, 
and ultimately reverse flow occurs at a 2 1.644. The distribution of axial velocity 
contains higher harmonics. 

(vi) The distribution of radial velocity has a maximum between the axis and the 
wall. 

(vii) The pressure at the wall is higher than that at the centre for contracting pipes, 
and vice versa for expanding ones. 

(viii) The pressure gradient along the axis is favourable for contracting pipes and 
adverse for expanding pipes except for 0 < a < 0.95. 

(ix) The shearing stress on the wall rapidly increases in absolute value with increasing 
la1 for contracting pipes, while its value is small for expanding pipes and changes sign 
beyond u = 1.644. 
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while the radial velocity is independent of x. 
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